Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mathematics ; 10(20):3899, 2022.
Article in English | MDPI | ID: covidwho-2082065

ABSTRACT

COVID-19 is the name of the new infectious disease which has reached the pandemic stage and is named after the coronavirus (COVs) which causes it. COV is a single-stranded RNA virus which in humans leads to respiratory tract symptoms which can lead to death in those with low immunities, particularly older people. In this study, a standard dynamic model for COVID-19 was proposed by comparing a simple model and the optimal control model to reduce the number of infected people and become a guideline to control the outbreak. Control strategies are the vaccination rate and vaccine-induced immunity. An analysis was performed to find an equilibrium point, the basic reproduction number (R0), and conditions that generate stability by using Lyapunov functions to prove the stability of the solution at the equilibrium point. Pontryagin's maximum principle was used to find the optimal control condition. Moreover, sensitivity analysis of the parameters was performed to learn about the parameters that might affect the outbreak in order to be able to control the outbreak. According to the analysis, it is seen that the efficacy of vaccines (b) and the infection rate (βan,βsn,βav,βsv) will affect the increased (decreased) incidence of the outbreak. Numerical analyses were performed on the Omicron variant outbreak data collected from the Thailand Ministry of Health, whose analyses then indicated that the optimal control strategy could lead to planning management and policy setting to control the COVID-19 outbreak.

SELECTION OF CITATIONS
SEARCH DETAIL